ON COMPLETING UNIMODULAR POLYNOMIAL VECTORS OF LENGTH THREE

RAVI A. RAO

ABSTRACT. It is shown that if R is a local ring of dimension three, with $\frac{1}{2} \in R$, then a polynomial three vector $(v_0(X), v_1(X), v_2(X))$ over R[X] can be completed to an invertible matrix if and only if it is unimodular. In particular, if $1/3! \in R$, then every stably free projective $R[X_1, \ldots, X_n]$ -module is free.

1. Introduction

In [6] A. Suslin queries

A. Suslin's question $(S_r(R))$. Let R be a local ring. If $1/r! \in R$, can every unimodular (r+1)-vector over R[X] be completed to an invertible matrix?

In this note we settle $S_r(R)$ when R is a noetherian local ring of Krull dimension three.

Let us briefly recapitulate known results on $S_r(R)$. Let R be a two dimensional noetherian local ring. A beautiful theorem of L. N. Vaserstein in [8] identifies the set $\operatorname{Um}_3(R[X])/E_3(R[X])$ with the Elementary Symplectic Witt group $\operatorname{W}_E(R[X])$. If $1/2 \in R$, a well-known theorem of M. Karoubi asserts that any invertible alternating matrix over a polynomial ring R[X] is stably congruent to its constant form. In particular, the Symplectic Witt group $\operatorname{W}(R[X]) \equiv 0$. M. P. Murthy had remarked that these two facts could be used to prove that every $v \in \operatorname{Um}_3(R[X])$ can be completed to an invertible matrix. We expanded on this theme of M. P. Murthy, in [3], to show that $S_d(R)$ holds. Here we extend the methods in [3] to prove

Theorem. Let R be a noetherian, local ring of Krull dimension three with $1/2 \in R$. Then every unimodular 3-vector over R[X] can be completed to an invertible matrix.

The reader can also find some very interesting results on A. Suslin's question, due to M. Roitman, in positive prime characteristics in [5]. The present approach had its genesis in [2], (of course, with roots in Vaserstein theory developed in [8], and guided by M. P. Murthy's remark), where I could extend some of M. Roitman's results in dimensions ≤ 4 .

Received by the editors September 30, 1988 and, in revised form, April 17, 1989. 1980 Mathematics Subject Classification (1985 Revision). Primary 13C10.

2. Preliminary remarks and calculations

All rings A considered in this article will be commutative with an identity element and noetherian. A vector $v=(v_0,v_1,\ldots,v_r)\in A^{r+1}$ is said to be unimodular if there is a vector $w=(w_0,w_1,\ldots,w_r)\in A^{r+1}$ such that $v_0w_0+\cdots+v_rw_r=1$. $\mathrm{Um}_{r+1}(A)$ will denote the set of all unimodular vectors $v\in A^{r+1}$. The group $Gl_{r+1}(A)$ of invertible matrices acts on A^{r+1} in a natural way: if $v\in A^{r+1}$, $\sigma\in Gl_{r+1}(A)$ then σ will map v to $v\sigma$. Under this action $\mathrm{Um}_{r+1}(A)$ is mapped onto itself; and so $Gl_{r+1}(A)$ acts on $\mathrm{Um}_{r+1}(A)$. We let \sim denote equivalence of two vectors under this action. Let $E_{r+1}(A)$ denote the subgroup of $Gl_{r+1}(A)$ consisting of all the elementary matrices, i.e. those matrices which are a finite product of matrices of the form $E_{ij}(\lambda)$, $i\neq j$, $\lambda\in A$, which has all its diagonal entries one, has one off-diagonal entry in the (i,j)th position equal λ , and has all other entries zero. $v\sim w$ will denote that v can be elementarily transformed to w. Let $\mathrm{Um}_{r+1}(A)/E_{r+1}(A)$ be the set of equivalence classes of vectors v under the equivalence $\sim w$ induce by the action of $E_{r+1}(A)$ on $\mathrm{Um}_{r+1}(A)$; and let [v] denote the equivalence class of $v\in \mathrm{Um}_{r+1}(A)$ in $\mathrm{Um}_{r+1}(A)/E_{r+1}(A)$.

- (2.1) W. Van der Kallen's group structure on $\operatorname{Um}_{d+1}(A)/E_{d+1}(A)$. If A is a ring whose maximal spectrum $\operatorname{Max}(A)$ is a finite union of subsets V_i where each V_i , when endowed with the (topology induced from the) Zariski topology is a space of Krull dimension $\leq d$ we shall say that A is essentially of dimension d. For instance, a ring of Krull dimension d is obviously essentially of dimension $\leq d$; a local ring of dimension d is essentially of dimension d; whereas a polynomial extension R[X] of a local ring R of dimension $d \geq 1$ has dimension $d \neq 1$ but is essentially of dimension $d \approx \operatorname{Max}(R[X]) = \operatorname{Max}(R/(a)[X]) \cup \operatorname{Max}(R_a[X])$ for any non-zero-divisor $a \in R$.
- In [9, Theorem 3.6], W. Van der Kallen has described how one could have an abelian group structure on $\mathrm{Um}_{d+1}(A)/E_{d+1}(A)$. In the sequel we shall always refer to this group structure on $\mathrm{Um}_{d+1}(A)/E_{d+1}(A)$; and let * denote the group multiplication henceforth. One has
- (2.1.1) Remark. Let A be essentially of dimension $d \ge 2$, and let $C_{d+1}(A)$ denote the set of all completable (d+1)-vectors in $\mathrm{Um}_{d+1}(A)$. Then,
 - (i) The map $\sigma \to [e_1\sigma]$, where $e_1=(1\,,\,0\,,\,\ldots\,,\,0)\in \mathrm{Um}_{d+1}(A)$, is a group homomorphism $Sl_{d+1}(A)\to \mathrm{Um}_{d+1}(A)/E_{d+1}(A)$.
 - (ii) $C_{d+1}(A)/E_{d+1}(A)$ is a subgroup of $Um_{d+1}(A)/E_{d+1}(A)$.
- *Proof.* (i) follows from [9, Theorem 3.16(iv)]. Since any $v \in C_{d+1}(A)$ can be completed to a matrix of determinant one, $C_{d+1}(A)/E_{d+1}(A)$ is the image of $Sl_{d+1}(A)$ under the homomorphism mentioned in (i); whence it is a subgroup of $\mathrm{Um}_{d+1}(A)/E_{d+1}(A)$.

- (2.2) On A. Suslin's procedure for completing $(a_0, a_1, a_2^2, \ldots, a_r^r)$. In [6, Proposition 1.6] A. Suslin shows that if $(a_0, a_1, \ldots, a_r) \in \mathrm{Um}_{r+1}(A)$ then $(a_0, a_1, \ldots, a_r^r)$ can be completed. His proof, as observed by M. P. Murthy in [1, Chapter V, Proposition 1.2], actually demonstrates,
- (2.2.1) **Proposition.** Let $(a_0, a_1, \ldots, a_r) \in \mathrm{Um}_{r-1}(A)$. Suppose that $(\overline{a}_0, \overline{a}_1, \ldots, \overline{a}_{r+1})$ is completable in $\overline{A} = A/(a_r)$. Then (a_0, a_1, \ldots, a_r') is completable.

As an application of this proposition we have

(2.2.2) **Proposition.** Let R be a local ring of dimension 3 with $1/2 \in R$. Let $v = (v_0, v_1, v_2, v_3) \in \mathrm{Um}_4(R[X])$. Then v is completable if and only if $v^{(2)} = (v_0^2, v_1, v_2, v_3)$ is completable.

Proof. By [3, Example 1.5.3 and Lemma 1.3.1],

$$[v^{(2)}] = [v] * [v]$$

in $\mathrm{Um_4}(R[X])/E_4(R[X])$. By Remark 2.1.1, v is completable implies that $v^{(2)}$ is also completable.

Conversely, let $v^{(2)}$ be completable. By [3, Proposition 1.4.4],

$$v \sim (w_0, w_1, w_2, c)$$

with $c \in R$ a non-zero-divisor. As mentioned in the introduction (or cf. [3, Theorem 2.5]), since dim R/(c) = 2 and $1/2 \in R$,

$$(\overline{w}_0, \overline{w}_1, \overline{w}_2) \in e_1 Sl_3(R/(c)[X])$$
.

By Proposition 2.2.1, (w_0, w_1, w_2, c^3) is completable. Thus,

- (i) $(v_0, v_1, v_2, v_3^3) \sim (w_0, w_1, w_2, c^3)$ by [10, Theorem],
- (ii) $[v]^n = [(v_0, v_1, v_2, v_3^n)]$ for all n by [3, Example 1.5.3 and Lemma 1.3.1].

Hence $[v]^2 = [v^{(2)}] \in C_4(R[X])/E_4(R[X])$, and $[v]^3 = [(w_0, w_1, w_2, c^3)] \in C_4(R[X])/E_4(R[X])$. By Remark 2.1.1, $[v] \in C_4(R[X])/E_4(R[X])$, i.e. v is completable.

(2.3) The elementary symplectic Witt group $W_E(A)$. If $\alpha \in M_r(A)$, $\beta \in M_s(A)$ are matrices then $\alpha \perp \beta$ denotes the matrix $\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} \in M_{r+s}(A)$. ψ_1 will denote $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \in E_2(\mathbf{Z})$, and ψ_r is inductively defined by $\psi_r = \psi_{r-1} \perp \psi_1 \in E_{2r}(\mathbf{Z})$, for $r \geq 2$.

A skew-symmetric matrix whose diagonal elements are zero is called an alternating matrix. If $\varphi \in M_{2r}(A)$ is alternating then $\det(\varphi) = (\mathrm{pf}(\varphi))^2$ where pf is a polynomial (called the *Pfaffian*) in the matrix elements with coefficients ± 1 . Note that we need to fix a sign in the choice of pf; so insist $\mathrm{pf}(\psi_r) = 1$ for all r. For any $\alpha \in M_{2r}(A)$ and any alternating matrix $\varphi \in M_{2r}(A)$ we have $\mathrm{pf}(\alpha^l \varphi \alpha) = \mathrm{pf}(\varphi) \det(\alpha)$. For alternating matrices φ , ψ it is easy to check that $\mathrm{pf}(\varphi \perp \psi) = (\mathrm{pf}(\varphi))(\mathrm{pf}(\psi))$.

Two matrices $\alpha \in M_r(A)$, $\beta \in M_s(A)$ are said to be *equivalent* (w.r.t. EA) if there is a $\varepsilon \in E_{2(r+s+l)}(A)$, for some l, such that $\alpha \perp \psi_{s+l} = \varepsilon^t(\beta \perp \psi_{s+l})\varepsilon$, (the t stands for 'transpose'). Denote this by $\alpha \underset{E}{\sim} \beta$. $\underset{E}{\sim}$ is an equivalence relation; denote by $[\alpha]$ the orbit of α under this relation. Moreover, a matrix equivalent to an alternating matrix is itself alternating and has the same Pfaffian.

It is easy to see (cf. [8, p. 945]) that \perp induces the structure of an abelian group on the set of all equivalence classes of alternating matrices with Pfaffian 1; this group is called the Elementary Symplectic Witt group and is denoted by $W_F A$.

- (2.4) M. Karoubi's theorem and square roots in $W_E(R[X])$. A famous theorem of M. Karoubi asserts that any invertible alternating matrix V(X) over a polynomial ring R[X] is stably congruent to its constant form if $1/2 \in R$, i.e. there is an l, and a $\sigma \in Sl_s(R[X])$, for suitable s, such that $\sigma^t(V(X) \perp \psi_l)\sigma = V(0) \perp \psi_l$. The machination of M. Karoubi's proof (cf. [8, §3]) gives
- (2.4.1) **Proposition.** Let R be a local ring with $1/2k \in R$, and let $[V] \in W_E(R[X])$. Then [V] has a kth root, i.e. there is a $[W] \in W_E(R[X])$ such that $[V] = [W]^k$ in $W_E(R[X])$.

Proof. Since R is local $W_E(R) \equiv 0$, so we may assume that $V(0) = \psi_r$ for some r. Let me describe M. Karoubi's process showing V is stably congruent to V(0); for details consult [8, §3]. The first step is to "stably make V(X) linear" (known as the "Higman trick")—i.e. find an $\varepsilon \in E_{2(r+t)}(R[X])$ such that

$$\varepsilon^{\mathsf{t}}(V\perp\psi_{t})=\psi_{r+t}+nX\,,$$

for some $t \ge 0$, some $n \in M_{2(r+t)}(R)$.

Since $\gamma = I_{r+t} - \psi_{r+t} nX \in Sl_{2(r+t)}(R[X])$, $\psi_{r+t} n$ is nilpotent, i.e. $(\psi_{r+t} n)^l \equiv 0$ for some l. Hence, if $1/2k \in R$, we can extract a kth root of γ $(=\beta^{2k} \text{ say})$ for some $\beta \in Sl_{2(r+t)}(R[X])$. Now M. Karoubi pointed out that

$$\varepsilon^{\mathsf{t}}(V \perp \psi_{\mathsf{t}})\varepsilon = \psi_{\mathsf{r}\perp\mathsf{t}}\gamma = \psi_{\mathsf{r}\perp\mathsf{t}}\beta^{2k} = (\beta^{k})^{\mathsf{t}}\psi_{\mathsf{r}\perp\mathsf{t}}\beta^{k}.$$

Let $W = \beta^t \psi_{r+t} \beta$. Then applying Whitehead's lemma one can check that $W \perp W \perp \cdots \perp W$ $(k \text{ times}) \sim_E V$, i.e. $[V] = [W]^k$ in $W_E(R[X])$.

(2.5) The antipodal vectors equality in $\operatorname{Um}_3(R[X])$ in small dimensions. In [3, Lemma 1.3.1] we showed that if a $v=(v_0\,,\,v_1\,,\,\ldots\,,\,v_d)\in\operatorname{Um}_{d+1}(A)$, where A is essentially of dimension d, can be elementarily transformed to (its antipodal vector) $-v=(-v_0\,,\,v_1\,,\,\ldots\,,-v_d)$ then for all n, $[(v_0^n\,,\,v_1\,,\,\ldots\,,\,v_d)]=[v]^n$ in $\operatorname{Um}_{d+1}(A)/E_{d+1}(A)$. There are many examples of vectors which cannot be elementarily transformed to their antipodal vector; but in [3, §1.5] we showed that if A=R[X], R a local ring of dimension 2 with $1/2\in R$, then for any $v\in\operatorname{Um}_3(R[X])$, $v\sim -v$. Here, by a different argument, we show that

(2.5.1) **Proposition.** Let R be a local ring of dimension ≤ 4 with $1/2 \in R$ and let $v = (v_0, v_1, v_2) \in \mathrm{Um}_3(R[X])$. Then $v = (v_0, v_1, v_2) \underset{E}{\sim} (-v_0, -v_1, -v_2) = -v$.

Proof. Choose a $w=(w_0\,,\,w_1\,,\,w_2)$ such that $v_0w_0+v_1w_2+v_2w_2=1$, and consider the alternating matrix V with Pfaffian 1 given by

$$V(v\,,\,w) = \left\{ \begin{array}{cccc} 0 & v_0 & v_1 & v_2 \\ -v_0 & 0 & w_2 & -w_1 \\ -v_1 & -w_2 & 0 & w_0 \\ -v_2 & w_1 & -w_0 & 0 \end{array} \right\} \in Sl_4(R[X])\,.$$

Since $1/2 \in R$, by M. Karoubi's theorem (cf. §2.4) there is a

$$\beta \in Sl_{4+2}(R[X])$$
,

for some l, such that $\beta^{t}(V \perp \psi_{l})\beta = \psi_{l+2}$. Since dim $R \leq 4$, by [7, Theorem 2.6], $\operatorname{Um}_{r}(R[X]) = e_{1}E_{r}(R[X])$ for all $r \geq 6$. Hence on applying [8, Lemma 5.5 and Lemma 5.6] we can find a $\beta^{*} \in Sl_{4}(R[X])$ such that $(\beta^{*})^{t}V\beta^{*} = \psi_{2}$.

Let $\delta = \text{diagonal } (-1, 1, -1, 1) \in E_4(R)$. Then $\delta^t \psi_2 \delta = -\psi_2$. Thus

$$(*) \qquad \begin{array}{ll} \delta^{t}(\beta^{*})^{t}V\beta^{*}\delta = \delta^{t}\psi_{2}\delta = -\psi_{2} = \psi_{2}^{t} = \left[\left(\beta^{*}\right)^{t}V\beta^{*}\right]^{t} = \left(\beta^{*}\right)^{t}V^{t}\beta^{*},\\ \text{and so if } \sigma = \left(\beta^{*}\right)^{t} \text{ then } (\sigma^{-1}\delta^{t}\sigma)V(\sigma^{-1}\delta^{t}\sigma)^{t} = -V. \end{array}$$

- By [7, Corollary 1.4] $\sigma^{-1}\delta^{t}\sigma \in E_{4}(R[X])$. Now the equation (*) will prove the proposition on applying [11, Theorem 10].
- (2.5.2) Remark. The above argument can be suitably modified to show that if $[V] \in W_E(R[X])$, where R is a local ring with $1/2 \in R$, then [V] = [-V] in $W_E(R[X])$.
- (2.6) "Coordinate squares" in $W_E(R[X])$. Let us say that an invertible alternating matrix V is a "coordinate kth power" if the first row of V has the form $(0, v_1^k, v_2, \ldots, v_{2r-1})$. It would be of interest to know if, under congenial conditions, the above fact, proven in Proposition 2.4.1, that every $[V] \in W_E(R[X])$ is a kth power in $W_E(R[X])$ (under suitable hypothesis on R) can be translated to read that [V] has a representative V^* which is a coordinate kth power and which, moreover, has the same size as that of V. We give some evidence for this here.

Firstly recall some multiplicative relations in $W_E(A)$ observed by L. N. Vaserstein in [8, Theorem 5.2(a₂)].

(2.6.1) The Vaserstein Rule. Let $v_1=(a_0\,,\,a_1\,,\,a_2)\,,\,\,v_2=(a_0\,,\,b_1\,,\,b_2)$ be unimodular vectors. Suppose that $a_0a_0'+a_1a_1'+a_2a_2'=1$, and that

$$v_3 = (a_0, (b_1, b_2) \begin{pmatrix} a_1 & a_2 \\ -a'_1 & a'_1 \end{pmatrix}) \in \mathrm{Um}_3(A).$$

Then for any w_1 , w_2 , w_3 such that $v_i \cdot w_i^t = 1$, i = 1, 2, 3, we have $[V(v_1, w_1)] \perp [V(v_2, w_2)] = [V(v_3, w_3)]$ in $W_E(A)$.

(Note. V(v, w) is defined in Proposition 2.5.1, and [V(v, w)] is well defined in $W_{\rm E}(A)$ via [8, Lemma 5.1].)

(2.6.2) **Corollary.** (i) Let $v_1 = (a_0, a_1, a_2)$, $v_2 = (b_0, a_1, a_2)$ be unimodular vectors. Suppose that $a_0a_0' + a_1a_1' + a_2a_2' = 1$ and that $v_3 = (a_0(b_0 + a_0') - 1, (b_0 + a_0')a_1, a_2) \in \mathrm{Um}_3(A)$. Then for any w_1, w_2, w_3 such that $v_1 \cdot w_i^t = 1$, i = 1, 2, 3, we have

$$[V(v_1, w_1)] \perp [V(v_2, w_2)] = [V(v_3, w_3)]$$
 in $W_E(A)$.

(ii) Let $v_1=(a_0,a_1,a_2)$, $v_2=(b_0^2,a_1,a_2)$ be unimodular vectors. Suppose that $v_3=(a_0b_0^2,a_1,a_2)$ and that w_1,w_2,w_3 are such that $v_iw_i^t=1$, i=1,2,3, then

$$[V(v_1, w_1)] \perp [V(v_2, w_2)] = [V(v_3, w_3)]$$
 in $W_F(A)$.

- *Proof.* (i) is immediate from the Vaserstein Rule. We refer the reader to [9, Theorem 3.16(iii)] for deriving (ii) from (i). Note: You may need the Roitman lemma in [5, Lemma 1].
- (2.6.3) The "antipodal vectors equality" lemma in $W_E(A)$. Let $v=(v_0\,,\,v_1\,,\,v_2)$ be a unimodular vector and assume that $v \sim v_0 \sim (-v_0\,,\,-v_1\,,\,-v_2)$. Let $v_1^{(2)}=(v_0^2\,,\,v_1\,,\,v_2)$ and let $v_1^{(2)}=(v_0^2\,,\,v_1^2\,,\,v_2^2)$ and let $v_1^{(2)}=(v_0^2\,,\,v_1^2\,,\,v_2^2)$ and let $v_1^{(2)}=(v_0^2\,,\,v_1^2\,,\,v_2^2)$ and $v_1^{(2)}=(v_0^2\,,\,v_1^2\,,\,v_2^2)$ and $v_1^{(2)}=(v_0^2\,,\,v_1^2\,,\,v_2^2)$ and $v_1^{(2)}=(v_0^2\,,\,v_1^2\,,\,v_2^2)$ and $v_1^{(2)}=(v_0^2\,,\,v_1^2\,,\,v_2^2)$ and $v_1^{(2)}=(v_0^2\,,\,v_1^2\,,\,v_2^2)$ and $v_1^{(2)}=(v_0^2\,,\,v_1^2\,,\,v_2^2)$

$$[V(v, w)]^2 = [V(v^{(2)}, w_1)]$$
 in $W_F(A)$.

Proof. Imitate the argument in [3, Lemma 1.3.1] in $W_E(A)$. (Note. You will need Corollary 2.6.2(ii) above.)

Finally, we give some conditions under which we can extract "coordinate squares" in $W_F(R[X])$;

(2.6.4) **Corollary.** Let R be a local ring of dimension ≤ 4 with $1/2 \in R$ and let $v = (v_0, v_1, v_2)$, $v^{(2)} = (v_0^2, v_1, v_2)$ be unimodular R[X]-vectors. Let w, w_1 such that $v \cdot w^t = v^{(2)} \cdot w_1^t = 1$. Then,

$$[V(v, w)]^2 = [V(v^{(2)}, w_1)]$$
 in $W_E(R[X])$.

Proof. This will follow from Proposition 2.5.1 and Lemma 2.6.3.

- (2.6.5) **Proposition.** Let R be a local ring of dimension ≤ 3 with $1/2 \in R$ and let $V \in Sl_4(R[X])$ be an alternating matrix with Pfaffian 1. Then $[V] = [V^*]$ in $W_E(R[X])$ with $V^* \in Sl_4(R[X])$ a coordinate square. Consequently, there is a stably elementary $\gamma \in Sl_4(R[X])$ such that $V = \gamma^t V^* \gamma$.
- *Proof.* By Proposition 2.4.1, $[V] = [W]^2$ for some $[W] \in W_E(R[X])$. By [7, Theorem 2.6] $\operatorname{Um}_r(R[X]) = e_1 E_r(R[X])$ for all $r \geq 5$, and so on applying [8, Lemma 5.3 and Lemma 5.5] a few times, if necessary, we can find an alternating matrix $W^* \in Sl_r(R[X])$ (with Pfaffian 1) such that $[W] = [W^*]$. Now apply Corollary 2.6.4 to find V^* as required. The last statement follows as above (only applying [8, Lemma 5.5 and Lemma 5.6] instead).

3. The main theorem

(3.1) **Theorem.** Let R be a local ring of Krull dimension three with $1/2 \in R$ and let $v = (v_0, v_1, v_2)$ be a unimodular 3-vector over R[X]. Then v can be completed to an invertible matrix.

Proof. Choose a $w = (w_0, w_1, w_2)$ such that $v_0 w_0 + v_1 w_1 + v_2 w_2 = 1$, and consider the alternating matrix V with Pfaffian 1 given by

$$V = \left\{ \begin{array}{cccc} 0 & v_0 & v_1 & v_2 \\ -v_0 & 0 & w_2 & -w_1 \\ -v_1 & -w_2 & 0 & w_0 \\ -v_2 & w_1 & -w_0 & 0 \end{array} \right\} \in Sl_4(R[X]) \,.$$

Since $1/2 \in R$, by M. Karoubi's theorem (see (*) in Proposition 2.4.1) there is a $\alpha \in Sl_{4+l}(R[X])$, for some l, such that $\alpha^{t}(V \perp \psi_{l})\alpha = \psi_{l+2}$.

Since dim R = 3, by [7, Theorem 2.6] $Um_r(R[X]) = e_1E_r(R[X])$ for all $r \ge 6$. Hence on applying [8, Lemma 5.5 and Lemma 5.6] we can find an $\alpha \in Sl_4(R[X])$ such that $\alpha^t V \alpha = \psi_2$. Consider $e_4 \alpha^t$, where $e_4 = (0, 0, 0, 1)$.

By [3, Proposition 1.4.4] $e_4 \alpha^t \approx (a_0(X), a_1(X), a_2(X), c)$, where $c \in R$ is a non-zero-divisor in R. Let the 'overbar' denote 'modulo (c)'. By [3, Proposition 2.2], $(\overline{a_0(X)}, \overline{a_1(X)}, \overline{a_2(X)}) \approx (\overline{b_0(X)}^2, \overline{b_1(X)}, b_2(X))$, for some $b_0(X), b_1(X), b_2(X) \in R[X]$. On "lifting" this elementary map, and after an appropriate elementary transformation further, we can arrange that $e_4 \alpha^{t} \sim$ $(b_0(X)^2, b_1(X), b_2(X), c).$

By Proposition 2.2.2, $(b_0(X), b_1(X), b_2(X), c)$ can be completed to an invertible matrix, say $\beta \in Sl_4(R[X])$ with $e_4\beta = (b_0(X), b_1(X), b_2(X), c)$.

Via Remark 1.1.1 follows that

$$e_{4}\beta^{-2}\alpha^{t} = [e_{4}\beta^{-2}] * [e_{4}\alpha^{t}] = [e_{4}\beta]^{-2} * [e_{4}\alpha^{t}]$$

$$= ([(b_{0}(X), b_{1}(X), b_{2}(X), c)]^{2})^{-1} * [e_{4}\alpha^{t}] = [e_{4}\alpha^{t}]^{-1} * [e_{4}\alpha^{t}] \equiv 1,$$

the last equality being deduced via [3, Example 1.5.3 and Lemma 1.3.1]. Thus,

 $\beta^{-2}\alpha^{t} = \varepsilon'\delta'$ for some $\varepsilon' \in E_{4}(R[X])$ and $\delta' = \begin{pmatrix} 1 & 0 \\ 0 & \delta \end{pmatrix}$ with $\delta \in Sl_{3}(R[X])$. Now $\psi_{2} = \alpha^{t}V\alpha = (\beta^{2}\varepsilon'\delta')V(\beta^{2}\varepsilon'\delta')^{t} = \beta^{2}V^{*}(\beta^{2})^{t}$, where $e_{1}V^{*} = (0, v\delta^{t}\varepsilon)$ for some $\varepsilon \in E_{3}(R[X])$ —this will follow as $\delta' = \begin{pmatrix} 1 & 0 \\ 0 & \delta \end{pmatrix}$ and via [11, Theorem 10].

By Proposition 2.6.5 there is a stably elementary $\gamma \in Sl_4(R[X])$ such that $\beta V^* \beta^t = \gamma^t V^{**} \gamma$, with $V^{**} \in Sl_4(R[X])$ a coordinate square. Let $e_1 V^{**} =$ $(0, a^2, b, c)$, and let α_0 (cf. §2.2) be a completion of (a^2, b, c) . Since

$$c_1 V^{**} = e_1 \begin{pmatrix} 1 & 0 \\ 0 & \alpha_0 \end{pmatrix}^{\mathsf{t}} \psi_2 \begin{pmatrix} 1 & 0 \\ 0 & \alpha_0 \end{pmatrix}$$

it follows via [8, Lemma 5.1] that

$$V^{**} = \varepsilon_1^{\mathsf{t}} \begin{pmatrix} 1 & 0 \\ 0 & \alpha_0 \end{pmatrix}^{\mathsf{t}} \psi_2 \begin{pmatrix} 1 & 0 \\ 0 & \alpha_0 \end{pmatrix} \varepsilon_1$$

for some $\varepsilon_1 \in E_4(R[X])$. Thus,

$$\beta V^* \beta^t = \gamma^t V^{**} \gamma = \gamma^t \varepsilon_1^t \begin{pmatrix} 1 & 0 \\ 0 & \alpha_0 \end{pmatrix}^t \psi_2 \begin{pmatrix} 1 & 0 \\ 0 & \alpha_0 \end{pmatrix} \varepsilon_1 \gamma.$$

Hence,

$$\beta^{-1} \left[\begin{pmatrix} 1 & 0 \\ 0 & \alpha_0^{-1} \end{pmatrix}^{t} (\varepsilon_1^{-1})^{t} (\gamma^{-1})^{t} \right] \beta V^* \beta^{t} \left[\gamma^{-1} \varepsilon_1^{-1} \begin{pmatrix} 1 & 0 \\ 0 & \alpha_0^{-1} \end{pmatrix} \right] (\beta^{-1})^{t}$$

$$= \beta^{-1} \psi_2(\beta^{-1})^{t} = \beta^{-1} (\beta^2 V^* (\beta^2)^{t}) (\beta^{-1})^{t} = \beta V^* \beta^{t} = \gamma^{t} V^{**} \gamma;$$

and so if

$$\theta = \beta^{\mathsf{t}} \gamma^{-1} \varepsilon_1^{-1} \begin{pmatrix} 1 & 0 \\ 0 & \alpha_1^{-1} \end{pmatrix} (\beta^{\mathsf{t}})^{-1} \gamma^{-1}, \text{ then } \theta^{\mathsf{t}} V^* \theta = V^{**}.$$

Compute $e_4\theta^{\rm t}$ in the abelian group ${\rm Um}_4(R[X])/E_4(R[X])$ via Remark 2.1.1 to get $[e_4\theta^{\rm t}]=[e_4(\gamma^{\rm t})^{-1}]^2$. But γ is stably elementary and so via [3, Proposition 2.6] $[e_4(\gamma^{\rm t})^{-1}]^2=1$; hence $[e_4\theta^{\rm t}]=1$, i.e. $e_4\theta^{\rm t} \sim e_4$. Hence

$$\theta^{\mathsf{t}} \varepsilon' = \begin{pmatrix} 1 & 0 \\ 0 & (\theta')^{\mathsf{t}} \end{pmatrix}$$

for some $\theta' \in Sl_3(R[X])$, $\varepsilon' \in E_4(R[X])$.

Now

$$\theta^{\mathsf{t}} V^* \theta = \begin{pmatrix} 1 & 0 \\ 0 & (\theta')^{\mathsf{t}} \end{pmatrix} (\varepsilon')^{-1} V^* ((\varepsilon')^{-1})^{\mathsf{t}} \begin{pmatrix} 1 & 0 \\ 0 & \theta' \end{pmatrix} = V^{**},$$

and so via [11, Theorem 10] we can deduce that there is an $\varepsilon'' \in E_3(R[X])$ such that $v\varepsilon''\theta' = (a^2, b, c)$. Since (a^2, b, c) is completable, so is v.

Remark. Let us, following M. Krusemeyer, say that a vector $v \in \mathrm{Um}_r(A)$ is skew-completable if there is an invertible alternating matrix $V \in Sl_{r+1}(A)$ with its first row $e_1V = (0, v)$.

By making some appropriate modifications in the argument used to prove Theorem 3.1 one can show that,

(3.2) **Theorem.** Let R be a local ring of Krull dimension d with $1/2 \in R$, and let $v = (v_0, v_1, \ldots, v_{d-1})$ be a skew-completable vector over R[X]. Then v can be completed to an invertible matrix.

Finally, using the well-known "Quillen-Suslin" Monic inversion and Local-Global principles, one can derive from $S_d(R)$ and Theorem 3.1 that,

(3.3) Corollary. Let R be a noetherian ring of dimension 3 with $1/6 \in R$. Then any stably extended projective module over $R[X_1, \ldots, X_n]$ is extended.

Note added in proof. The contents (especially the mode of proof of the main result) of this note seems of interest in connection with the following problem:

(i) Let $V: \mathrm{Um}_3(A)/E_3(A) \to \mathrm{W}_E(A)$ be the Vaserstein symbol. Is this map injective if $\dim A = 3$?

I also hope that, after incorporation of some additional theories, the techniques used here will provide some insight towards settling,

- (a) Let R be a local ring with $\frac{1}{2} \in R$. Is every $v \in Um_3(R[X])$ completable?
- (b) Let A be a smooth affine algebra over the field \mathbb{C} of complex numbers of dimension d. Is a stably free A-module of rank (d-1) a free module?

In an article entitled On some actions of stably elementary matrices on alternating matrices we prove that

"Let A have Krull dimension ≤ 5 , and let $V \in Sl_4(A) \cap E_5(A)$ be a stably elementary alternating matrix of Pfaffian one. Then $V^8 \in E_4(A)$."

Note. One needs to show that $V \in E_4(A)$ to settle (i) above.

We also give some examples of 3 dimensional affine algebras for which the Vaserstein symbol V is bijective.

REFERENCES

- 1. S. K. Gupta and M. P. Murthy, Suslin's work on linear groups over polynomial rings and Serre problem, Indian Statistical Institute, New Delhi.
- R. A. Rao, Two examples of the Bass-Quillen-Suslin conjectures, Math. Ann. 279 (1987), 227-238.
- 3. ____, The Bass-Quillen conjecture in dimension three but characteristic $\neq 2$, 3 via a question of A. Suslin, Invent. Math. 93 (1988), 609-618.
- 4. M. Roitman, On unimodular rows, Proc. Amer. Math. Soc. 95 (1985), 184-188.
- 5. ____, On stably extended projective modules over polynomial rings, Proc. Amer. Math. Soc. 97 (1986), 585-589.
- 6. A. Suslin, On stably free modules, Math. USSR-Sb. 31 (1977), 479-491.
- 7. _____, On the structure of the special linear group over polynomial rings, Math. USSR-Izv. 11 (1977), 221-238.
- 8. A. Suslin and L. N. Vaserstein, Serre's problem on projective modules over polynomial rings and algebraic K-theory, Math. USSR-Izv. 10 (1976), 937-1001.
- 9. W. Van der Kallen, A group structure on certain orbit sets of unimodular rows, J. Algebra 82 (1983), 363-397.
- L. N. Vaserstein, Operations on orbits of unimodular vectors, J. Algebra 100 (1986), 456–461.
- 11. ____, Computation of K₁ via Mennicke symbols, Comm. Algebra 15 (1987), 611-656.

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005, India